• カテゴリー別アーカイブ DIY
  • ニトリのクリスマスツリーをUSB電源に改造してみた。

    クリスマスの季節が近づいてくると、お店にクリスマス関連のアイテムが並びますね☆
    やはり目玉はクリスマスツリーやイルミネーションアイテムでしょうか。最近はLED化されており、非常に消費電力が少ないので電池駆動の製品も増えてきましたね。
    しかし、24時間常時点灯させたいと考えると電池交換の手間や電池代がバカになりません。
    そこで、USB電源化することでモバイルバッテリーやUSB-ACアダプタから電力供給できるように改造してみました。


    クリスマスツリーに付属するコントロールユニットとは

    今回USB電源改造に使用するイルミネーションユニットです。
    今年にニトリで販売されているツリーには、このタイプの電池ボックス兼コントロールユニットが付属しています。

    コントロールユニットを開けてみると、単三電池を3本使う仕様となっています。
    乾電池を格納する部分にはゴムパッキンが仕込まれており、簡易防滴仕様になっているようです。

    一般的な使い方は、このように充電式電池やアルカリ電池等をセットして使う方法です。
    しかし、長時間使いたい場合は電池交換の頻度が高く手間がかかります。


    USB電源を仮接続して動作チェックしてみた

    まずはUSB電源で動作可能かどうかチェックしてみる為に、USBワニ口クリップ電源コードで仮配線をしてみました。
    基本的には1.5Vが3本で4.5Vで動作する設計ですが、電池駆動の製品は基本的に幅広い電圧で動くように設計されているものが多いです。
    下はニッケル水素充電電池の1.2V*3本=3.6Vから、上は1.5Vリチウム乾電池の初期電圧1.8V*3本=5.4Vまで対応するように設計しないといけません。
    という事は、USBの5Vでも問題ないのでは??という考えでUSB電源を接続してみました。

    5V時の電流は0.08A~0.12AとLEDならではの低消費電力です。
    しかし乾電池で使うとなると24時間の連続点灯は避けたいところ。
    ひとまず耐久試験ということで、この状態で1週間ほど連続点灯させてみましたが特に問題は発生しませんでした。


    クリスマスツリーのコントロールユニットを分解する

    USB電源の5Vでも故障や発熱することなく正常に動作し続けたので、早速改造に取り掛かりましょう。
    まずはコントロールユニットのビスを取り外して内部をチェックしてみたいと思います。

    ビスを外して基板押えカバーを取り外しました。
    内部は8pinのICが搭載された基板で構成されていました。

    コントロールユニットの基板です。
    基板型式はJL-863F-Sとなっており、ICの表面にも863Fと印字されていました。
    チップの素性は謎ですが、コンデンサや抵抗などが一切搭載されていない潔い設計に驚きます(^^;
    ICの電源周りも電池直結という状況なので、スイッチング電源を取り付けるとノイズの影響で正常に動作しない可能性もありますね。。。

    ひとまずUSB電源化といことで、長さ1mのUSBケーブルを買ってきました。
    先端は切断して利用するので、MicroUSBでもTYPE-Cでも問題ありません。色や長さで選ぶと良いでしょう。

    まずはコントロールユニットに先ほどUSBケーブルを通すための穴あけが必要です。
    今回はブラックアンドデッカーのUSB充電式ドライバーを利用しました。

    充電端子はMicroUSB B端子を採用。
    ドライバーに専用ACアダプタは付属していますが、一般的なUSBケーブルで充電可能です。


    クリスマスツリーのコントロールユニットを改造する

    付属のドリルビットでサクッと穴をあけました。
    この時、基板や既存の配線を破損させないように十分注意しましょう。

    この通り、綺麗に穴が開きました。
    USB充電式ドライバーでもこの程度の樹脂であれば穴あけ加工など十分対応可能ですね✨

    コントロールユニットにちょうど良いサイズの穴が開いたので、次はMicroUSBケーブルの加工に移りましょう。
    加工に必要な道具はニッパ一本です。

    こちら側のコネクタは必要ないので・・・

    ニッパでチョッキン!カットしちゃいましょう(^^

    カットしたUSBケーブルを外側から中側に向けて穴を通します。

    先ほど穴を通したUSBケーブルの先端部分を5cmほど被覆を向いて内部ケーブルが見えるようにしましょう。
    USBケーブルの場合、赤・黒・白・緑の4色のケーブルが通っています。
    それぞれ役目がありますが、電源として使う場合は赤・黒の2本だけ残して、白・緑は切断して問題ありません。

    さらに赤・黒のケーブルは先端の被覆を向いて、中の銅線が見える状態まで加工します。

    そして、内部の銅線に予備ハンダ作業を行います。
    予備半田とは事前に銅線部にハンダを浸透させておく作業を意味します。

    事前にハンダを浸透させておくことで、次のハンダ付け作業がスムースに行えるようにするのが目的です。
    ハンダ、ハンダコテ、一眼レフを一度に持って撮影したので、あまり良い角度で写真が撮れませんでした。すみません。

    先ほどのケーブルを基板に半田付けして作業は完了です。
    基本的には黒がマイナス、赤がプラスという色分けになっています。
    この考えでほぼ90%間違いありませんが、念のためにテスター等で極性をチェックしておくと良いでしょう。

    この状態でモバイルバッテリーを接続して点灯試験を実施しました。

    ところが、LED自体は点灯するものの、点灯パターンによっては動作がおかしいようです。
    ゆっくり明暗するようなパターンは高速で点滅して明らかに異常な状態です。
    おそらくスイッチング電源のノイズに起因するICの異常動作だと思われます。

    という訳で電源ノイズ対策の基本となるコンデンサ増設を行いました。
    この基板は電池駆動という事でコンデンサの類が一切搭載されていませんでしたが、基本的にはマイコンICの電源部にコンデンサを装着するのが一般的です。
    本来は積層セラミックコンデンサを搭載したい所ですが、手持ちがなかったため小容量のアルミ電解コンデンサを搭載しました。
    この状態で様々なUSB電源に接続して動作確認しましたが、全く問題ありませんでした☆

    ハンダ付け作業が終わったら、ケーブルの断線を防ぐための固定作業を実施しましょう。
    今回は紫外線硬化樹脂を使って短時間で仕上げたいと思います。
    これは手芸やアクセサリー制作で利用されるUVレジンです。

    まずはUSBケーブルの長さを調整して無理のない引き回しを取りましょう。

    そしてUVレジンを適量流し込みます。
    不意にケーブルが引っ張られた時や、万一ハンダ付け箇所が外れてしまった時を想像しながら塗布しましょう。

    UVレジンを固める作業を行います。
    基本的には太陽光などでも硬化させることが可能ですが、短時間で硬化させるにはLEDやUVランプを使った人工光が最適です。
    今回はハイパワーUVLEDを搭載ししたネイル用の紫外線ランプを使ってみました。

    UVレジンの硬化中はレジンの急激な発熱や軽い発煙などの現象が発生します。
    これは正常な化学反応なので焦らず作業を続行しましょう。

    UVレジンが完全に硬化すると、表面がカチカチに固まり、ベタつきなどが無くなります。

    最初に外したカバーを再度装着して、改造作業は完了です。

    では実際にツリーに装着して点灯させてみましょう。
    明るさも十分で多彩な点灯パターンがあるので、お値段以上の価値があると思います。


    USB電源化作業のまとめ

    いかがだったでしょうか?
    LED全盛の時代という事もあり、売られているものはコンセント式ではなく、電池式の物が多くなりました。
    省電力だからこそ、時間を気にせず長時間点灯させたい!と考える方も多いかと思います。
    比較的簡単に改造出来て電池代や交換の手間も不要となりますので、ぜひUSB電源化改造にチャレンジしてもらえればと思います。


  • PCで認識しなくなったSSDを格安修理してデータを救出してみた。

    普段使用しているノートパソコンはSSDに換装していますが、SSDの故障に遭遇してしまいました。
    機器は壊れても問題ありませんが、貴重なデータだけは救いたい。という訳でDIYでSSDを格安修理した方法を紹介します。

    それはある日突然訪れました。。。
    いつものようにPCの電源を投入すると、見慣れないメッセージ。

    「Insert system disk in drive. Press any key when ready…」
    システムディスクをセットして任意のキーを押すように要求されました。
    つまり、SSD自体がPCに認識されなくなり、起動ディスク用要求されているという状態です。
    これは非常に悪い状態で、起動はおろか、スキャンディスクすらできない状況。。。

    ひとまず、PCの電源を切ってSSDをチェックしてみることにしました。
    搭載されていたのはcrucial製のSSDであるM4シリーズでした。
    このモデルは元々不具合を抱えており、採用各メーカーより「ファームウェア更新の案内」が出されています。
    しかし、認識しなくなった今、そんなことは関係ありません。

    PC本体よりSSDを取り出してみました。
    crucial M4 SOLID STATE DRIVEのステッカーが鮮やかですね。

    少しPCに詳しい人なら持っているであろう、「SATA-USB3.0変換アダプタ」を用いてSSDの状態をチェックしてみましょう。

    PC起動時のBIOSで認識しないという状況なので、ある程度は予測できましたが、USB接続した状態でも認識しませんでした。

    念のために「HDD LOW LEVEL FORMAT TOOL 4.40」でもチェックしてみます。
    しかしながら、USB接続したCrucial製のSSDは表示されません。

    この段階で故障という事が確定したので、以前にMicroSDカードの復旧でお世話になった「http://www.anydata.jp/」さんのページをチェックしてみました。
    価格は128GBで136,000円です。今回故障したものは512GBなので単純計算で136,000円×4倍=544,000円。。。
    ちょっと悩んでしまう価格ですよね(^^;

    今回はデータの価値と価格を比較して、DIYによる修理をチャレンジしてみることにしました。
    物理障害であればデータフォーマット等の専門知識も不要なので何とかなりそうです。と簡単に考えながらスタート(^^

    Crucial製M4-SSDはプラスタイプのビスで固定されているので、一般的な精密ドライバーで簡単に分解することが可能です。

    Crucial製M4-SSDを固定しているビスを4本外しました。

    Crucial製M4-SSDを慎重に分解します。
    放熱板を兼ねたアルミ製のベース部分と、樹脂スペーサー、フタの3個に分離できました。

    Crucial製M4-SSDのベース部分はアルミ製で基板が装着されています。
    放熱ゲル等の存在があるのでしょうか、なかなか強力に張り付いていて取り外しできません。
    隙間に精密ESDピンセットを差し込んで徐々に隙間を広げていきます。

    パカッと開きました。想像通りブルーの放熱ゲルでしっかりと密着していました。
    一気に力を入れると基板を痛めてしまう恐れがあるので、慎重に作業しましょう。

    Crucial製M4-SSDの内部基板です。こちらは表面なのでコントローラチップが乗っていますね。
    コントローラチップはMarvell製の「88SS9187」です。
    SATAは6Gbps対応でNANDとの通信はONFI2.0でMode5に対応。またDDR2/3-800のキャッシュにも対応します。
    コマンド体系ではTRIMコマンドにも対応しており、現時点においても実用的なパフォーマンスを発揮します。

    Crucial製M4-SSDの内部基板です。
    これは512GBモデルという事もあり裏面にもNANDチップがぎっしりとフル実装されています。

    Crucial製M4-SSDのSATAコネクタ部分です。
    基礎的な点検としては接触不良を疑うのは基本中の基本です。まずは、半田状態をしっかりとチェック。
    この部分では半田クラックや基板のパターン浮き、ウィスカ等の発生も確認できません。正常といってよい状況です。

    SATAコネクタを補強するプレート部分には基板のパターン剥離が見受けられましたが、今回の故障とは関係ありません。
    Crucial製M4-SSDでは非常に小さなパターンに対して固定されていますが、強度が必要であればもう少し大きなベタパターンが適切ではないでしょうか。

    続いて電源周りのチップを確認してみましょう。
    外観目視では燃えたチップ等も見当たらず、匂いも正常です。

    Crucial製M4-SSDを基板単体で再テストしてみます。
    各部の電圧チェックや異常発熱などを見つけるのが目的です。
    この状態では放熱ゲル等もありませんので、長時間の通電は故障を拡大させる恐れがあります。短時間で済ませるようにしましょう。

    色々と試した結果、故障個所を特定しました。
    写真のようにコントローラチップを洗濯バサミで挟むと一瞬認識することが分かりました。
    Crucial製M4-SSDではコントローラー部に放熱ゲルが仕込んでありましたが、その部分の半田不良が発生しているようです。
    発熱が多いBGAタイプの部品は熱膨張率の違いから半田不良が発生しやすいんですよね。

    故障個所が判明すれば、あとは修理するだけです。
    今回のコントローラチップはBGAタイプのパッケージです。
    BGAとは(Ball Grid Array/ボールグリッドアレイ)の略称で現代の電子機器では一般的なモノです。
    しかしながら半田面が見えているわけではないので、修理には特殊な工法が必要となります。

    一般的には半田コテなどが有名ですが、今回はヒートガンを利用して半田修正します。

    ちなみに不良個所がSATAコネクタの場合は半田コテでの修正作業が必要となりますが、一番の問題はSATAコネクタの入手でしょうか。
    しかしオンライン購入でパーツを探せば入手できないという訳でもありません。
    特にSATAコネクタのような特殊な部品は一般的に入手が難しいですが、アールエスコンポーネンツであればパーツ購入が可能でした。
    例えば「Molex基板接続用ソケットSATAシリーズ22極」なども簡単に入手可能です。
    その他、基板の空きランドへ配線加工したい場合など、ヘッダーピンやコネクタ配線用の圧接コネクタなどが必要となりますが、こんな時も規格から幅広く検索できる「アールエスコンポーネンツ」を愛用しています。
    何といっても個人相手に1個単位で販売してもらえるのが有難いところ。

    こちらは、ヒートガンと共に使用する薬品であるフラックスです。
    これは一度硬化した半田に塗布して再加熱することで半田自体の表面張力をさげたり、酸化被膜を除去する効果があります。
    フラックス無しでは絶対に失敗しますので、忘れずに準備するようにしてください。


    まずはCrucial製M4-SSDの基板を縦向けにセットします。
    私はSATAコネクタ側を下向けにしました。

    そしてフラックスをハケにとり、コントローラチップの隙間に流し込んでいきます。

    フラックスは流動性の高い液体なので、このように少しずつ塗布していきます。

    別の角度から。このようにハケを寝かせてと塗布するのも良いかもしれませんね。
    周辺の部品やチップサイズなどに応じて塗布しましょう。

    何度か塗布して、この写真のように4隅からフラックスが溢れ出てきたところで塗布作業は終了です。
    続いてヒートガンによる加熱作業に入りましょう。

    加熱時は基板を起こして水平にしましょう。
    立て向けたままだと、半田が解けた際にチップがはがれたりズレたりする可能性があります。

    そしてヒートガンでチップを加熱してリフロー工法で半田を溶かします。
    温度プロファイルについては周辺パーツやチップサイズなどで変化しますが、私はフラックスの乾燥状態などを見ながら勘でやりました。
    ヒートガンの温度は300℃程度でしょうか。

    再溶融が完了するとこのようにフラックスが乾燥して色が変わります。
    チップが冷えるのを待ってテストに備えましょう。
    この際、保冷材や冷風等で一気に冷却すると熱収縮の違いで半田が割れてしまうので、焦る気持ちを抑えてゆっくり待つようにしましょう。

    修理が完了したCrucial製M4-SSDをUSBで接続してみました。無事ドライブが認識されました(^^

    念のために「HDD LOW LEVEL FORMAT TOOL 4.40」でもチェックしてみます。
    先ほどとは違い、M4-CT512 M4SSD2がしっかりと認識されています。修理完了ですね☆

    まだSSDがバラバラの状態なので、放熱等を考慮して元通りに戻してからデータ復旧作業を行うようにしましょう。

    分解したSSDを元に戻して、SSDのデータをチェックしてみました。
    するとすべてのデータは正常となっており、救出に成功しました。

    また前半で不具合のあるSSDと書いていましたが、現在は対策ファームウェアが公開されているので、それを適用しておきましょう。
    手順についてはドスパラのページでも紹介されていますので、参考までにリンクを貼っておきます。
    Crucial SSD M4シリーズ 不具合対処方法

    今回のSSDは M4-CT512M4SSD2 で ファームウェアは 000F となっています。

    最新版を適用することで、000F → 070Hにバージョンアップすることが出来ました。

    データバックアップを取った後なので、もう故障は怖くありません。
    PCに接続して起動させてみるテストも無事にクリアし、正常な状態として再び利用が可能となりました。

    いかがだったでしょうか?
    SSDは振動や衝撃に強いという事が広まった感はありますが、HDDと比較した場合の信頼性については??
    絶対故障しないという魔法のデバイスではありませんので、普段からバックアップを心掛けるようにしましょう。


  • 磁気処理スクアラントライアソシエイツ TR-30 を試す

    磁気処理スクアランって聞いたことありますか?
    昔から販売されている特殊なオイルですが、2017年時点ではかなり入手困難になってきています。
    今回は奇跡的に2本も購入することが出来たので、うれしさのあまり記事にしてみました☆

    クロネコヤマトの宅急便で届きました。

    中の納品書には「トライアソシエイツ 磁気処理スクアラン TR-30 100ml」の文字。

    一体どんなものかというと、このように無色透明なオイルです。
    ホームセンター等で入手可能なシリコンオイルのようにも見えますが、中身は全く違うものなんです。

    パッケージから磁気処理スクアラン TR-30を取り出してみました。
    オイル本体以外にも小冊子などが含まれています。

    パッケージ裏の台紙です。
    「AV機器が甦る!!」や「クルマの性能をアップ!!」の文字が踊ります。

    そして極めつけは「スーパーオイル SQUALAN <磁気処理>」と書かれたタブ。
    メーカー自らスーパーオイルと語るほどの性能なんです(^^)

    小冊子を見てみましょう。
    TR-30 磁気処理スクアランの文字。やはり磁気処理というところに秘密がありそうですね。

    なるほど、用途としては自動車用のオイルにも使えるとの事ですが、4リットルで\83,300という価格。
    なかなか自動車用として使うには勇気がいる価格設定ですね。
    それだけ貴重なオイルという訳です。

    磁気処理スクアランの小冊子にも「車の性能アップに」という文字。
    詳細をしっかり熟読しておきましょう。

    なんとレース用エンジンですら3%もの出力向上を確認したとのこと。
    レースの世界で3%といえば非常に大きな差であることは明白です。これは凄い効能ですね。

    そして、オーディオ用の利用方法も。
    私自身はこちらの用途として購入しているので、しっかりと説明を読んでおきました。

    なんと可動部や接点以外にも、CD信号面に塗布するだけで音質が向上するとの事。
    この利用方法はまだ試していませんが、非常に興味がある使い方です。

    そして小冊子は磁気処理スクアランの開発ストーリーへ。
    まさにMADE IN JAPANの技術が結集したスーパーオイルなんですね。

    このオイルの秘密は特許技術の交流磁場による磁界処理法で、分子レベルでの安定に寄与する技術との事です。

    磁気処理スクアランの物性が記載してありました。
    凝固点 -92℃(JIS K2269)
    沸点 350℃以上
    表面張力 28.5dyn/cm2
    絶対粘度 27.0cp(25℃)
    比重 0.808(25℃)

    では磁気処理スクアラン TR-30のボトルを見てみましょう。
    「Super oil 磁気処理スクアラン TR-30」の文字が目立ちますね。

    利用方法、効能は潤滑・接点・清浄など。
    内容量は 100mlで2700円です。
    会社名は TRI トライアソシエイツとなっています。

    また別の面にはこのような表記が。
    SQUALAN (C30 H62)n
    化学式からは「トリアコンタン」が該当しそうな感じですね。

    ちなみに特許番号も記載されていました。
    特許 第1718938号との事。

    手前のモノは10年ほど前に購入したモノ。
    まだ半分位は残っていますが、今後の事を考えて2本を購入しました。
    これで一生分は確保できたかな!?

    では実際の利用方法です。
    比較的メジャーな使い方ですが、イヤホンのピンジャックに施工してみましょう。
    イヤホンのピンジャックは古くなってくると、動かしたときにガリガリとノイズが乗ることがありますよね。
    それを一発で解消する手順になります。l

    まずは綿棒等に磁気処理スクアラン TR-30を少量取ります。

    そして端子部分に塗り伸ばす要領でまんべんなく塗布します。
    この時、汚れを取るようなイメージで作業を進めましょう。

    そして、ティッシュ等でキレイにオイル分を拭き上げます。

    すると酸化被膜が除去されて、非常にクリアな端子に生まれ変わりました。
    音質面でもガリガリとノイズが入ることもなく、非常にクリアなサウンドが楽しめます。
    どうしても乾いてきてしまうものなので、定期的に施工することで良い状態を維持しましょう。

    またパソコンのメモリー端子などにも非常に有効です。
    なんとなく調子が悪い、エラーで起動しないなど、メモリ自体の故障でなければ高確率で回復します。
    サーバ管理者なら工具箱に磁気処理スクアランを常備、もう常識ですよね♪

    また一眼レフカメラの電子接点部にも。
    オートフォーカスエラーなどに悩んでいるときは、まず磁気処理スクアラン。

    そして拭き上げた綿棒がこのように汚れるのは、酸化被膜と共に汚れが除去された証拠です。

    これは開封から10年以上が経過した、磁気処理スクアラン。
    やはり変性が少ないとの記載通り、不純物が漂うことなく非常にきれいな状態です。

    ワイヤレス技術が進歩した現代においても、まだまだ接点は数多く存在します。
    そんな接点の救世主が、トライアソシエイツ 磁気処理スクアラン TR-30なのです。

    いかがだったでしょうか。
    オーディオ系にこだわる人はまず、接点部を見直してみてはいかがでしょうか?
    ピンジャックやRCA端子など、見違えるように音質がアップします。
    また最近あらゆる機器に装備されているUSB端子などにも施工してみると良いかもしれませんね☆